170 research outputs found

    Spin-charge-lattice coupling near the metal-insulator transition in Ca3Ru2O7

    Full text link
    We report x-ray scattering studies of the c-axis lattice parameter in Ca3Ru2O7 as a function of temperature and magnetic field. These structural studies complement published transport and magnetization data, and therefore elucidate the spin-charge-lattice coupling near the metal-insulator transition. Strong anisotropy of the structural change for field applied along orthogonal in-plane directions is observed. Competition between a spin-polarized phase that does not couple to the lattice, and an antiferromagnetic metallic phase, which does, gives rise to rich behavior for B ∥\parallel b.Comment: 6 pages, 4 figures, to appear in Phys. Rev.

    Chiral properties of hematite ({\alpha}-Fe2O3) inferred from resonant Bragg diffraction using circularly polarized x-rays

    Full text link
    Chiral properties of the two phases - collinear motif (below Morin transition temperature, TM=250 K) and canted motif (above TM) - of magnetically ordered hematite ({\alpha}-Fe2O3) have been identified in single crystal resonant x-ray Bragg diffraction, using circular polarized incident x-rays tuned near the iron K-edge. Magneto-electric multipoles, including an anapole, fully characterize the high-temperature canted phase, whereas the low-temperature collinear phase supports both parity-odd and parity-even multipoles that are time-odd. Orbital angular momentum accompanies the collinear motif, while it is conspicuously absent with the canted motif. Intensities have been successfully confronted with analytic expressions derived from an atomic model fully compliant with chemical and magnetic structures. Values of Fe atomic multipoles previously derived from independent experimental data, are shown to be completely trustworthy

    Dramatic role of critical current anisotropy on flux avalanches in MgB2 films

    Full text link
    Anisotropic penetration of magnetic flux in MgB2 films grown on vicinal sapphire substrates is investigated using magneto-optical imaging. Regular penetration above 10 K proceeds more easily along the substrate surface steps, anisotropy of the critical current being 6%. At lower temperatures the penetration occurs via abrupt dendritic avalanches that preferentially propagate {\em perpendicular} to the surface steps. This inverse anisotropy in the penetration pattern becomes dramatic very close to 10 K where all flux avalanches propagate in the strongest-pinning direction. The observed behavior is fully explained using a thermomagnetic model of the dendritic instability.Comment: 4 pages, 5 figure

    Magnetic properties of GdT2T_2Zn20_{20} (T = Fe, Co) investigated by X-ray diffraction and spectroscopy

    Get PDF
    We investigate the magnetic and electronic properties of the GdT2T_2Zn20_{20} (TT = Fe and Co) compounds using X-ray resonant magnetic scattering (XRMS), X-ray absorption near-edge structure (XANES) and X-ray magnetic circular dichroism (XMCD) techniques. The XRMS measurements reveal that the GdCo2_2Zn20_{20} compound has a commensurate antiferromagnetic spin structure with a magnetic propagation vector τ⃗\vec{\tau} = (12,12,12)(\frac{1}{2},\frac{1}{2},\frac{1}{2}) below the N\'eel temperature (TN∼T_N \sim 5.7 K). Only the Gd ions carry a magnetic moment forming an antiferromagnetic structure with magnetic representation Γ6\Gamma_6. For the ferromagnetic GdFe2_2Zn20_{20} compound, an extensive investigation was performed at low temperature and under magnetic field using XANES and XMCD techniques. A strong XMCD signal of about 12.5 %\% and 9.7 %\% is observed below the Curie temperature (TC∼T_C \sim 85 K) at the Gd-L2L_2 and L3L_3 edges, respectively. In addition, a small magnetic signal of about 0.06 %\% of the jump is recorded at the Zn KK-edge suggesting that the Zn 4pp states are spin polarized by the Gd 5dd extended orbitals

    Orbital ordering transition in Ca2_2RuO4_4 observed with resonant x-ray diffraction

    Full text link
    Resonant x-ray diffraction performed at the LII\rm L_{II} and LIII\rm L_{III} absorption edges of Ru has been used to investigate the magnetic and orbital ordering in Ca2_2RuO4_4 single crystals. A large resonant enhancement due to electric dipole 2p→4d2p\to 4d transitions is observed at the wave-vector characteristic of antiferromagnetic ordering. Besides the previously known antiferromagnetic phase transition at TN=110\rm T_{N}=110 K, an additional phase transition, between two paramagnetic phases, is observed around 260 K. Based on the polarization and azimuthal angle dependence of the diffraction signal, this transition can be attributed to orbital ordering of the Ru t2gt_{2g} electrons. The propagation vector of the orbital order is inconsistent with some theoretical predictions for the orbital state of Ca2_2RuO4_4.Comment: to appear in PR

    Pressure-Induced Rotational Symmetry Breaking in URu2_2Si2_2

    Full text link
    Phase transitions and symmetry are intimately linked. Melting of ice, for example, restores translation invariance. The mysterious hidden order (HO) phase of URu2_2Si2_2 has, despite relentless research efforts, kept its symmetry breaking element intangible. Here we present a high-resolution x-ray diffraction study of the URu2_2Si2_2 crystal structure as a function of hydrostatic pressure. Below a critical pressure threshold pc≈3p_c\approx3 kbar, no tetragonal lattice symmetry breaking is observed even below the HO transition THO=17.5T_{HO}=17.5 K. For p>pcp>p_c, however, a pressure-induced rotational symmetry breaking is identified with an onset temperatures TOR∼100T_{OR}\sim 100 K. The emergence of an orthorhombic phase is found and discussed in terms of an electronic nematic order that appears unrelated to the HO, but with possible relevance for the pressure-induced antiferromagnetic (AF) phase. Existing theories describe the HO and AF phases through an adiabatic continuity of a complex order parameter. Since none of these theories predicts a pressure-induced nematic order, our finding adds an additional symmetry breaking element to this long-standing problem.Comment: 6 pages, 4 figures and supplemental material

    Magnetic order in GdMnO3 in magnetic fields

    Get PDF
    Resonant magnetic x ray scattering at the Gd L2 edge is used to investigate the magnetic order of the Gd moments in multiferroic GdMnO3 at low temperatures. We present high magnetic field data on the magnetic ordering of Gd in the ferroelectric phase of GdMnO3. Our findings reaffirm the important role of the Gd moments in the symmetric magnetic exchange striction responsible for ferroelectricity in this compoun

    Oxygen superstructures throughout the phase diagram of (Y,Ca)Ba2Cu3O6+x\bf (Y,Ca)Ba_2 Cu_3 O_{6+x}

    Full text link
    Short-range lattice superstructures have been studied with high-energy x-ray diffuse scattering in underdoped, optimally doped, and overdoped (Y,Ca)Ba2Cu3O6+x\rm (Y,Ca)Ba_2 Cu_3 O_{6+x}. A new four-unit-cell superstructure was observed in compounds with x∼0.95x\sim 0.95. Its temperature, doping, and material dependence was used to attribute its origin to short-range oxygen vacancy ordering, rather than electronic instabilities in the CuO2\rm CuO_2 layers. No significant diffuse scattering is observed in YBa2_2Cu4_4O8_{8}. The oxygen superstructures must be taken into account when interpreting spectral anomalies in (Y,Ca)Ba2Cu3O6+x\rm (Y,Ca)Ba_2 Cu_3 O_{6+x}
    • …
    corecore